Respuesta :
Given :
- The area of a rectangle is 35. If the length is 2 more than the width.
To Find :
- The dimensions of the rectangle.
Solution :
- Let's assume the width of the rectangle as " x "
- As, the length is 2 more than the width, So the Length will be "(x + 2)"
We know that,
- [tex] \bf{ Length \times width = Area }[/tex]
So, Substituting the given values :
[tex]\qquad \sf \: { \dashrightarrow (x + 2) \times x = 35}[/tex]
[tex]\qquad \sf \: { \dashrightarrow {x}^{2} + 2x = 35}[/tex]
[tex]\qquad \sf \: { \dashrightarrow {x}^{2} + 2x - 35 = 0}[/tex]
[tex]\qquad \sf \: { \dashrightarrow {x}^{2} + 7x + 5x - 35 = 0}[/tex]
[tex]\qquad \sf \: { \dashrightarrow {x}(x + 7) - 5(x + 7) = 0}[/tex]
[tex]\qquad \sf \: { \dashrightarrow ({x}- 5)(x + 7) = 0}[/tex]
[tex]\qquad \sf \: { \dashrightarrow \: x =5 , x = - 7}[/tex]
Note :
- The width can't be a negative number, so we can't choose x = -7, So we need to choose x = 5
Hence ,
- Width = 5
- Length = 5 + 2 = 7
Therefore ,
- The dimensions of the rectangle are 5 and 7
Given
- Area of rectangle = 35
- Length = x+2
- Width = x
To find
- Dimensions of the rectangle = ?
Solution
- [tex] \sf \purple \dashrightarrow \orange{area = length \times width}[/tex]
- [tex] \sf \purple \dashrightarrow \orange{35= (x+2)\times x}[/tex]
- [tex] \sf \purple \dashrightarrow \orange{35 = {x}^{2} + 2x}[/tex]
- [tex] \sf \purple \dashrightarrow \orange{35 - {x}^{2} - 2x = 0}[/tex]
- [tex] \sf \purple \dashrightarrow \orange{ - 35 + {x}^{2} + 2x = 0}[/tex]
- [tex] \sf \purple \dashrightarrow \orange{ {x}^{2} + 2x - 35 = 0 }[/tex]
- [tex] \sf \purple \dashrightarrow \orange{ {x}^{2} + 7x - 5x - 35 = 0 }[/tex]
- [tex] \sf \purple \dashrightarrow \orange{ x \times (x + 7) - 5(x + 7) = 0 }[/tex]
- [tex] \sf \purple \dashrightarrow \orange{ x = - 7, x = 5 }[/tex]
Since, The dimension cannot be in negative we will consider the value of x as 5...
Now,
[tex] \tt \pink \multimap \blue{length = x + 2 = > 5 + 2 = > 7}[/tex]
[tex] \tt \pink \multimap \blue{width = x = > 5}[/tex]