Respuesta :

Answer:

about 20.1 yr

I hope this helps you :D

The half life of the substance is 20.1 years.

What is exponential decay of a substance?

Exponential decay is the decrease in a quantity according to the law for a parameter and constant , where is the exponential function and is the initial value.

According to the given problem,

We know,

Equation of decay: [tex]y = ae^{-kt}[/tex]  where,

a = original mass of the substance

 t = time in years

Mass of the substance remaining = ( 100 - 99.9 )%

                                                        =  0.1%

⇒ 0.1 % of a = [tex]ae^{-200k}[/tex]

⇒ 0.001a =  [tex]ae^{-200k}[/tex]

⇒ 0.001 = [tex]e^{-200k}[/tex]

Taking log on both sides,

⇒ ln (0.001) = ln [tex]e^{-200k}[/tex]

⇒ ln ( [tex]10^{-3}[/tex] ) = ln [tex]e^{-200k}[/tex]

⇒ -3 ln 10 = -200k  [ ln(e) = 1 ]

⇒ k = [tex]\frac{3 ln(10)}{200}[/tex]  [equation 1 ]

Now,

Now substituting 50% of the remaining mass to find time (t),

⇒ 50% of a = 0.5a

⇒ 0.5a = [tex]ae^{\frac{3ln(10)}{200} }[/tex]

⇒ 0.5 = [tex]e^{\frac{3ln(10)}{200} }[/tex]

Taking log on both sides,

⇒ ln (0.5) = ln  [tex]e^{\frac{3ln(10)t}{200} }[/tex]

⇒ ln (0.5) =  [tex]\frac{3 ln(10)}{200}[/tex]t

⇒ t = ln (0.5) × 200 / 3ln(10)

⇒ t ≈ 20.1 years.

Hence, we can conclude, the half-life of the substance is 20.1 years.

Learn more about exponential decay of a substance here: https://brainly.com/question/27492127

#SPJ2