A hot air balloon 30 m above the ground is tethered by three cables as shown by DA, DB and DC. The coordinates of the the points A, B and C with respect to the origin are (-20,0,0), (30,0,20) and (0,0,20), respectively,
If the hot air balloon is pulling upwards with a force of 900 N, what is the tension in each three cables.
The grid lines on the ground plane are spaced 10 m apart. Note: Height is along the y axis.

a)Find position vector for DA , DB , DC
b) Find unit vector for DA , DB , DC
c) Using Laws of Equilibrium find force in each cable.

Respuesta :

The force in each cable depends on the orientation of the cable relative

to the force of the balloon and to each other.

Responses:

a) The position vectors are;

Position vector, DA, [tex]r_{DA}[/tex] = -20·i - 30·j + 0·k

DB, [tex]r_{DB}[/tex] = 30·i - 30·j + 20·k

DC, [tex]r_{DC}[/tex] = 0·i - 30·j + 20·k

[tex]b) \hspace{0.15 cm} Unit \ vectors \ are, u_{DA} = \underline{ \dfrac{-2 \cdot \sqrt{13} \cdot i}{13} - \dfrac{ 3 \cdot \sqrt{13} \cdot j }{13 }}[/tex]

  • [tex]u_{DB} = \underline{\dfrac{3 \cdot \sqrt{13} }{13} \cdot i + \dfrac{2 \cdot \sqrt{13} }{13} \cdot k}[/tex]
  • [tex]u_{DC} = \underline{ -\dfrac{3 \cdot \sqrt{13} }{13} \cdot j + \dfrac{2 \cdot \sqrt{13} }{13} \cdot k}[/tex]

c) The approximate values of the force in each cable are;

  • DA: 3245 N
  • DB: 2163.3 N
  • DC: -2163.3 N

Which method is used to calculate forces in vector form?

a) The position vector is a vector that locates a point relative to another point.

The position vector,

[tex]r_{DA} = \mathbf{ r_A - r_D}[/tex]

Whereby the coordinate of the point D is taken as (0, 30, 0), we have;

  • [tex]r_{DA}[/tex] = -20·i + 0·j + 0·k - (0·i + 30·j + 0·k) = -20·i - 30·j + 0·k

Similarly, we have;

[tex]r_{DB}[/tex] = 30·i + 0·j + 20·k - (0·i + 30·j + 0·k) = 30·i - 30·j + 20·k

[tex]r_{DC}[/tex] = 0·i + 0·j + 20·k - (0·i + 30·j + 0·k) = i - 30·j + 20·k

b) The unit vectors are  therefore;

[tex]u_{DA} = \mathbf{ \dfrac{r_{DA}}{|r_{DA} |}}[/tex]

Which gives;

[tex]u_{DA} = \dfrac{-20 \cdot i - 30 \cdot j + 0 \cdot k}{\sqrt{(-20)^2 + (-30)^2 + 0} } = \dfrac{-2 \cdot i - 3 \cdot j }{\sqrt{13} } = \dfrac{\left(-2 \cdot i - 3 \cdot j \right) \times \sqrt{13} }{13 }[/tex]

[tex]u_{DA} = \mathbf{ \dfrac{-20 \cdot i - 30 \cdot j + 0 \cdot k}{\sqrt{(-20)^2 + (-30)^2 + 0} }}} = \dfrac{-2 \cdot i - 3 \cdot j }{\sqrt{13} } = \underline{\dfrac{-2 \cdot \sqrt{13} \cdot i}{13} - \dfrac{ 3 \cdot \sqrt{13} \cdot j }{13 }}[/tex]

[tex]u_{DB} = \dfrac{30 \cdot i + 0 \cdot j + 20 \cdot k}{\sqrt{(30)^2 + (20)^2 + 0} } = \mathbf{\dfrac{3 \cdot i +2 \cdot k }{\sqrt{13} } } = \underline{\dfrac{3 \cdot \sqrt{13} }{13} \cdot i + \dfrac{2 \cdot \sqrt{13} }{13} \cdot k}[/tex]

[tex]u_{DC} = \mathbf{\dfrac{-30 \cdot j + 20 \cdot k}{\sqrt{(30)^2 + (20)^2 } } }= \underline{-\dfrac{3 \cdot \sqrt{13} }{13} \cdot j + \dfrac{2 \cdot \sqrt{13} }{13} \cdot k}[/tex]

c) The force in each cable are found as follows;

[tex]\vec F_{DA} = \mathbf{ \dfrac{-2 \cdot \sqrt{13} }{13}\cdot i \cdot F_{DA}- \dfrac{ 3 \cdot \sqrt{13} }{13 } \cdot j\cdot F_{DA}}[/tex]

[tex]\vec F_{DB} = \mathbf{ \dfrac{3 \cdot \sqrt{13} }{13} \cdot i \cdot F_{DB}+ \dfrac{2 \cdot \sqrt{13} }{13} \cdot k\cdot F_{DB}}[/tex]

[tex]\vec F_{DC} = \mathbf{ -\dfrac{3 \cdot \sqrt{13} }{13} \cdot j \cdot F_{DC}+ \dfrac{2 \cdot \sqrt{13} }{13} \cdot k\cdot F_{DC}}[/tex]

Sum of forces, ∑F = 0, gives;

[tex]\mathbf{ \dfrac{-2 \cdot \sqrt{13} }{13}\cdot i \cdot F_{DA} +\dfrac{3 \cdot \sqrt{13} }{13} \cdot i \cdot F_{DB}} = 0[/tex]

[tex]\mathbf{ - \dfrac{ 3 \cdot \sqrt{13} }{13 } \cdot j\cdot F_{DA} -\dfrac{3 \cdot \sqrt{13} }{13} \cdot j \cdot F_{DC} + 900} = 0[/tex]

[tex]\mathbf{ \dfrac{2 \cdot \sqrt{13} }{13} \cdot k\cdot F_{DB} + \dfrac{2 \cdot \sqrt{13} }{13} \cdot k\cdot F_{DC}} = 0[/tex]

Solving the above simultaneous equation with a graphing calculator gives;

  • The force in the cable DA, [tex]F_{DA}[/tex] ≈ 3245 N
  • The force in the cable DB, [tex]F_{DB}[/tex] ≈ 2163.3 N
  • The force in the cable DC, [tex]F_{DC}[/tex] ≈ -2163.3 N

Learn more about vectors here:

https://brainly.com/question/2263823