Respuesta :

The Bernoulli distribution is a distribution whose random variable can  only take 0 or 1

  • The value of E(x2) is p
  • The value of V(x) is p(1 - p)
  • The value of E(x79) is p

How to compute E(x2)

The distribution is given as:

p(0) = 1 - p

p(1) = p

The expected value of x2, E(x2) is calculated as:

[tex]E(x^2) = \sum x^2 * P(x)[/tex]

So, we have:

[tex]E(x^2) = 0^2 * (1- p) + 1^2 * p[/tex]

Evaluate the exponents

[tex]E(x^2) = 0 * (1- p) + 1 * p[/tex]

Multiply

[tex]E(x^2) = 0 +p[/tex]

Add

[tex]E(x^2) = p[/tex]

Hence, the value of E(x2) is p

How to compute V(x)

This is calculated as:

[tex]V(x) = E(x^2) - (E(x))^2[/tex]

Start by calculating E(x) using:

[tex]E(x) = \sum x * P(x)[/tex]

So, we have:

[tex]E(x) = 0 * (1- p) + 1 * p[/tex]

[tex]E(x) = p[/tex]

Recall that:

[tex]V(x) = E(x^2) - (E(x))^2[/tex]

So, we have:

[tex]V(x) = p - p^2[/tex]

Factor out p

[tex]V(x) = p(1 - p)[/tex]

Hence, the value of V(x) is p(1 - p)

How to compute E(x79)

The expected value of x79, E(x79) is calculated as:

[tex]E(x^{79}) = \sum x^{79} * P(x)[/tex]

So, we have:

[tex]E(x^{79}) = 0^{79} * (1- p) + 1^{79} * p[/tex]

Evaluate the exponents

[tex]E(x^{79}) = 0 * (1- p) + 1 * p[/tex]

Multiply

[tex]E(x^{79}) = 0 + p[/tex]

Add

[tex]E(x^{79}) = p[/tex]

Hence, the value of E(x79) is p

Read more about probability distribution at:

https://brainly.com/question/15246027