Respuesta :

Answer:

option c .

Step-by-step explanation:

Given exponential equation is ,

[tex]\longrightarrow 2^{7-2x}= \dfrac{1}{4}[/tex]

As we know that 4 = 2² , so ;

[tex]\longrightarrow 2^{7-2x}= \dfrac{1}{2^2}[/tex]

Recall that ,[tex] a^{-m}=\dfrac{1}{a^m}[/tex] .So ;

[tex]\longrightarrow 2^{7-2x}= 2^{-2} [/tex]

Since the bases are equal we can compare the powers as ,

[tex]\longrightarrow 7-2x = -2[/tex]

Subtracting 7 on both sides,

[tex]\longrightarrow -2x = -9[/tex]

Divide both sides by -2,

[tex]\longrightarrow x =\dfrac{-9}{-2}[/tex]

Simplify,

[tex]\longrightarrow \underline{\underline{ x = 4.5 }} [/tex]

Hence the correct option is C .

Answer:

  • C) 4 and a half

Step-by-step explanation:

To solve this question, we can use either of the 2 below given methods:

  1. Rule of exponents
  2. Logarithms

1. Rule of Exponents:

[tex]2 ^ { 7-2x } = \frac{ 1 }{ 4 }\\\rightarrow 2 ^ { 7-2x } = \frac{ 1 }{ 2^{2} }[/tex]

Now, by using the law → [tex]x^{-y} = \frac{1}{x^{y}}[/tex]...

[tex]2 ^ { 7-2x } = \frac{ 1 }{ 2^{2} }\\2 ^ { 7-2x } = 2^{-2}[/tex]

Now, let's take the exponential values as the base values are equal.

[tex]7 - 2x = - 2\\- 2x = - 2 + (-7)\\- 2x = - 9\\\boxed{x = \frac{9}{2} = 4.5}[/tex]

2. Logarithms:

[tex]2 ^ { 7-2x } = \frac{ 1 }{ 4 }\\\rightarrow2^{-2x+7}=\frac{1}{4}[/tex]

Now, take the logarithm of both the sides of the equation.

[tex]\log(2^{-2x+7})=\log(\frac{1}{4})[/tex]

We know that, the logarithm of a number raised to an exponential power is power times the logarithm of the number. So,

[tex]\log(2^{-2x+7})=\log(\frac{1}{4}) \\ \rightarrow \left(-2x+7\right)\log(2)=\log(\frac{1}{4})[/tex]

Now, divide both the sides of the equstion by log (2).

[tex]-2x+7=\frac{\log(\frac{1}{4})}{\log(2)}[/tex]

According to the change of base formula, [tex]\frac{\log(x)}{\log(y)}[/tex] = [tex]\log_{y}(x)[/tex]. Then,

[tex]-2x+7=\log_{2}\left(\frac{1}{4}\right)[/tex]

By subtracting 7 from both the sides of the equation & then simplifing it further....

[tex]-2x=-2-7 \\-2x = - 9\\\boxed{x = \frac{9}{2} = 4.5}[/tex]

  • We get the same value by using either of the 2 methods.
  • The value of x = 9/2 or 4.5

_____________

Hope it helps!

[tex]\mathfrak{Lucazz}[/tex]