Respuesta :

Answer:

[tex]\sf x=-4[/tex]  [tex]\sf \ and[/tex]  [tex]\sf y=45[/tex]

Step-by-step explanation:

given:

[tex]\sf{-\frac{1}{2} x+\frac{1}{5} y=11}[/tex]

[tex]\sf{3 x+\frac{1}{4} y=-\frac{3}{4} }[/tex]

make x subject:

[tex]\sf{-\frac{1}{2} x+\frac{1}{5} y=11}[/tex]

[tex]\sf{-\frac{1}{2} x =11-\frac{1}{5}y}[/tex]

[tex]\sf{- x =22-\frac{2}{5}y}[/tex]

[tex]x =-22+\frac{2}{5}y}[/tex]

solve using substitution method:

[tex]\sf{3 x+\frac{1}{4} y=-\frac{3}{4} }[/tex]

[tex]\sf{3 (-22+\frac{2}{5}y) +\frac{1}{4} y=-\frac{3}{4} }[/tex]

[tex]\sf-66 +\frac{6}{5} y+\frac{1}{4} y = -\frac{3}{4}[/tex]

[tex]\sf 1.45y = 65.25[/tex]

[tex]\sf y=45[/tex]

then x will be:

[tex]x =-22+\frac{2}{5}y}[/tex]

[tex]x =-22+\frac{2}{5}(45)}[/tex]

[tex]\sf x=-4[/tex]