Respuesta :
Answer:
Apple = $0.55
Orange = $0.35
Step-by-step explanation:
Let A = cost of an apple
Let R = cost of an orange
Monday: 5A + 2R = 3.45
Thursday: 3R + 7A = 4.90
Rewrite 5A + 2R = 3.45 to make R the subject:
⇒ 2R = 3.45 - 5A
⇒ R = 1.725 - 2.5A
Substitute R = 1.725 - 2.5A into 3R + 7A = 4.90 and solve for A:
⇒ 3(1.725 - 2.5A) + 7A = 4.90
⇒ 5.175 - 0.5A = 4.90
⇒ 0.5A = 0.275
⇒ A = 0.55
Substitute found value for A into 5A + 2R = 3.45 and solve for R:
⇒ 5(0.55) + 2R = 3.45
⇒ 2.75 + 2R = 3.45
⇒ 2R = 0.7
⇒ R = 0.35
Answer:
apples cost $0.55 each, orange costs $0.35 each
Step-by-step explanation:
let apples be a, let the oranges be o
make equations:
- 5a + 2o = $3.45 ............equation 1
- 3o + 7a = $4.90 ............equation 2
make a the subject for equation 1:
[tex]\sf 5a + 2o = $3.45[/tex]
[tex]\sf 5a = 3.45 - 2o[/tex]
[tex]\sf a = \frac{3.45 - 2o}{5}[/tex]
solve:
[tex]3o + 7(\sf \frac{3.45 - 2o}{5}) = $4.90[/tex]
[tex]\sf 0.2o+4.83=4.9[/tex]
[tex]\sf o=0.35[/tex]
each orange cost $0.35
For apples:
[tex]\sf a = \frac{3.45 - 2o}{5}[/tex]
[tex]\sf a = \frac{3.45 - 2(0.35)}{5}[/tex]
[tex]a=0.55[/tex]
each apples cost $0.55