Enter the equation of the following using line in slope-intercept form. Two points on the line: (4, -2) and (-2, 4).

Respuesta :

[tex](\stackrel{x_1}{4}~,~\stackrel{y_1}{-2})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{4}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{4}-\stackrel{y1}{(-2)}}}{\underset{run} {\underset{x_2}{-2}-\underset{x_1}{4}}}\implies \cfrac{4+2}{-6}\implies \cfrac{6}{-6}\implies -1[/tex]

[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-2)}=\stackrel{m}{-1}(x-\stackrel{x_1}{4}) \\\\\\ y+2=-x+4\implies y=-x+2[/tex]