Respuesta :
m∠4= 2x°
m∠5 = (x+9)°
case one: If both lie on the same plane then,
m∠4+ m∠5 = 180°
2x+x +9° = 180°
3x+9° = 180°
3x=171°
x= 171°/3
x= 57°
so,
m∠4 = 57° x 2° = 114°
m∠5= 57°+9° =66°
case two : If the angles are on opposite side of each other then,
m∠4=m∠5
2x= x+9°
2x-x=9°
x=9°
so,
m∠4m= 2x9 = 18°
∠5= 9+9= 18°
1.) m∠4 = 2x°
[tex]→m∠4+ m∠5 = 180°[/tex]
[tex]→2x+x +9° = 180°[/tex]
[tex]→3x+9° = 180°[/tex]
[tex]→3x=171°[/tex]
[tex]→x= \frac{171°}{3}[/tex]
[tex]→x= 57°[/tex]
So,
[tex]m∠4 = 57° × 2° = 114°[/tex]
[tex]m∠5= 57°+9° =66°[/tex]
2.) m∠5 = (x+9)°
[tex]→m∠4=m∠5[/tex]
[tex]→2x= x+9°[/tex]
[tex]→2x-x=9°[/tex]
[tex]→x=9°[/tex]
So,
[tex]m∠4m= 2×9 = 18°[/tex]
[tex]∠5= 9+9= 18°[/tex]