Respuesta :

m∠4= 2x°

m∠5 = (x+9)°

case one: If both lie on the same plane then,

m∠4+ m∠5 = 180°

2x+x +9° = 180°

3x+9° = 180°

3x=171°

x= 171°/3

x= 57°

so,

m∠4 = 57° x 2° = 114°

m∠5= 57°+9° =66°

case two : If the angles are on opposite side of each other then,

m∠4=m∠5

2x= x+9°

2x-x=9°

x=9°

so,

m∠4m= 2x9 = 18°

∠5= 9+9= 18°

1.) m∠4 = 2x°

[tex]→m∠4+ m∠5 = 180°[/tex]

[tex]→2x+x +9° = 180°[/tex]

[tex]→3x+9° = 180°[/tex]

[tex]→3x=171°[/tex]

[tex]→x= \frac{171°}{3}[/tex]

[tex]→x= 57°[/tex]

So,

[tex]m∠4 = 57° × 2° = 114°[/tex]

[tex]m∠5= 57°+9° =66°[/tex]

2.) m∠5 = (x+9)°

[tex]→m∠4=m∠5[/tex]

[tex]→2x= x+9°[/tex]

[tex]→2x-x=9°[/tex]

[tex]→x=9°[/tex]

So,

[tex]m∠4m= 2×9 = 18°[/tex]

[tex]∠5= 9+9= 18°[/tex]