Respuesta :
Answer:
[tex]\rf x=\frac{\sqrt{10}}{4},\:x=-\frac{\sqrt{10}}{4}[/tex]
step wise explanation:
- [tex]\rf 8x^2 - 3=2[/tex]
change sides:
- [tex]\rf 8x^2 =2+3[/tex]
simplify
- [tex]\sf 8x^2 = 5[/tex]
change sides:
- [tex]\sf x^2 = \frac{5}{8}[/tex]
changing square to square root:
- [tex]x = \pm \sqrt{\frac{5}{8} }[/tex]
normal answer:
- [tex]\rf \sqrt{\frac{5}{8} } \ \ or -\sqrt{\frac{5}{8} }[/tex]
apply radical rule of
- [tex]\rf \frac{\sqrt{5} }{\sqrt{8} } } \ \ or \rf -\frac{\sqrt{5} }{\sqrt{8} } }[/tex]
- [tex]\sf \frac{\sqrt{5}}{2\sqrt{2}} \ \ or \ \ \sf -\frac{\sqrt{5}}{2\sqrt{2}}[/tex]
rationalise:
- [tex]\frac{\sqrt{5}\sqrt{2}}{2\sqrt{2}\sqrt{2}} \ \ or \ - \frac{\sqrt{5}\sqrt{2}}{2\sqrt{2}\sqrt{2}}[/tex]
final answer, simplified:
- [tex]\rf x=\frac{\sqrt{10}}{4},\:x=-\frac{\sqrt{10}}{4}[/tex]
Answer:
[tex]x = \boxed{ \frac{\sqrt{10}}{4} , - \frac{\sqrt{10}}{4} }[/tex]
Step-by-step explanation:
We can solve this question by using the method of finding the square root.
The given equation is:
[tex]8x ^ { 2 } -3=2[/tex]
Add 3 to both the sides of the equation.
[tex]8x^{2}=2+3[/tex]
Now, add 2 & 3 to get 5.
[tex]8x^{2}=5[/tex]
Dividing both the sides of the equation by 8, we get...
[tex]x^{2}=\frac{5}{8}[/tex]
Now, take the square root of both the sides of the equation...
[tex]x =\sqrt{ \frac{ 5 }{ 8 } } \\x = \frac{\sqrt{5}}{\sqrt{8}} \\[/tex]
Rationalize the denominator.
[tex]x = \frac{\sqrt{5}}{2\sqrt{2}} \\x = \frac{\sqrt{5}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}} \\x = \frac{\sqrt{5}\sqrt{2}}{2\times 2} \\x = \frac{\sqrt{10}}{2\times 2} \\x = \boxed{ \frac{\sqrt{10}}{4} , - \frac{\sqrt{10}}{4} }[/tex]
[tex]\rule{200}{3}[/tex]
- The value of x = [tex]\boxed{ \frac{\sqrt{10}}{4} , - \frac{\sqrt{10}}{4} }[/tex]
[tex]\rule{200}{3}[/tex]
Hope this helps!