What is the length of the shortest side of a triangle that has vertices at (-2, 5), (-2, -7), and (-6, -4)?
A. 9 units


B. 2√5 units


C. √7 units


D. 5 units

Respuesta :

Answer:

D. 5 units

Step-by-step explanation:

To work out the length use formula:

[tex]length = \sqrt{(y₂-y1) {}^{2} + (x₂-x1) {}^{2}} [/tex]

length of AB:

[tex]AB = \sqrt{( - 4 - 5) {}^{2} + ( - 6 - ( - 2)) {}^{2} } = \sqrt{97} [/tex]

length of AC:

[tex]AC = \sqrt{( - 7 - 5) {}^{2} + ( - 2 - ( - 2)) {}^{2} } = 12[/tex]

length of BC:

[tex]BC = \sqrt{( - 7 - ( - 4)) {}^{2} + ( - 2 - ( - 6)) {}^{2} } = 5[/tex]

as you can see BC has the shortest side of 5 units

Ver imagen SpiritInly