contestada

Suppose that the supply of x units of a product at price p dollars per unit is given by the following.

p = 20 + 90 ln(2x + 4)

(a) Find the rate of change of supply price with respect to the number of units supplied.
Answer: [tex]\frac{DP}{DX}[/tex] = [tex]\frac{90}{x+2}[/tex]

(b) Find the rate of change of supply price when the number of units is 38.
Answer: $ 2.25

(c) Approximate the price increase associated with the number of units supplied changing from 38 to 39.
ANSWER NEEDED: $

Respuesta :

Answer:

(a) dp/dx = 90/(x+2)

(b) $2.25

(c) approx = $2.25

    exact = $2.22

Step-by-step explanation:

[tex]p = 20 + 90 \ln(2x + 4)[/tex]

(a) To find the rate of change, differentiate [tex]p[/tex] with respect to [tex]x[/tex] :

[tex]\implies \frac{d}{dx}(p) = \frac{d}{dx}(20) + \frac{d}{dx}(90 \ln(2x + 4))[/tex]

[tex]\implies \frac{dp}{dx}=0+90\times\dfrac{1}{2x+4}\times2[/tex]

[tex]\implies \frac{dp}{dx}=\dfrac{180}{2x+4}[/tex]

[tex]\implies \frac{dp}{dx}=\dfrac{90}{x+2}[/tex]

(b)  Find  [tex]\frac{dp}{dx}[/tex]  when [tex]x=38[/tex] :

[tex]\implies \frac{dp}{dx}=\dfrac{90}{38+2}[/tex]

[tex]\implies \frac{dp}{dx}=\dfrac{90}{40}[/tex]

[tex]\implies \frac{dp}{dx}=2.25[/tex]

(c)  Approximate price increase associated with the number of units supplied changing from 38 to 39 is  [tex]\frac{dp}{dx}[/tex]  when [tex]x=38[/tex]

[tex]\implies \$2.25[/tex]

Exact price increase:

[tex]\implies \left. p \right_{x=39}-\left. p \right_{x=38}\\\\\implies [20 + 90 \ln(2 \times 39 + 4)]-[20 + 90 \ln(2\times38 + 4)]\\\\\implies 416.6047323...-414.3823972...\\\\\implies 2.222335133...\\\\\implies \$2.22[/tex]