Respuesta :
Answer:
[tex]\sf x^3 -2x+2[/tex]
a = 1, b = 0, c = -2, d = 2
Explanation:
- [tex]\sf (2x - 1) (x^2 -2) - x (x^2 - x -2)[/tex]
using distributive method:
- [tex]\sf 2x^3-4x-x^2+2 - x (x^2 - x -2)[/tex]
expand:
- [tex]\sf 2x^3-4x-x^2+2 - x^3 +x^2 +2x[/tex]
group terms:
- [tex]\sf 2x^3-x^3 -x^2 +x^2-4x+2x+2[/tex]
final form:
- [tex]\sf x^3 -2x+2[/tex]
comparing with [tex]\sf ax^3 + bx^2 + cx + d[/tex] || our input: [tex]\sf x^3 +0x^2 -2x+2[/tex]
we can determine that: a = 1, b = 0, c = -2, d = 2
Answer:
a = 1
b = 0
c = -2
d = 2
Step-by-step explanation:
Given polynomial:
[tex]\sf= (2x-1)(x^2-2)-x(x^2-x-2)\\\\Distributing \\\\= 2x(x^2-2)-1(x^2-2)-x^3+x^2+2x\\\\= 2x^3-4x-x^2+2-x^3+x^2+2x\\\\Combining \ like \ terms\\\\= 2x^3-x^3-x^2+x^2-4x+2x+2\\\\= x^3-2x +2\\\\Comparing \ it \ with \ \bold{ax^3+bx^2+cx+d}, \ we \ get:\\\\a = 1\\\\b = 0\\\\c = -2\\\\d = 2\\\\\rule[225]{225}{2}[/tex]
Hope this helped!