(rs) (4) =
(r/s) (3) =

A composite functions is gotten from the combination of two or more functions.
Given that:
[tex]r(x) = 2\sqrt x[/tex]
[tex]s(x) = \sqrt x[/tex]
[tex](a)\ (rs)(4)[/tex]
This is calculated as follows:
[tex](rs)(4) = r(4) \times s(4)[/tex]
Calculate r(4) and s(4)
[tex]r(4) = 2\sqrt 4 = 2 \times 2 = 4[/tex]
[tex]s(4) = \sqrt 4 = 2[/tex]
So, we have:
[tex](rs)(4) = r(4) \times s(4)[/tex]
[tex](rs)(4) = 4 \times 2[/tex]
[tex](rs)(4) = 8[/tex]
[tex](b)\ (r/s)(3)[/tex]
This is calculated as follows:
[tex](r/s)(3) = r(3) \div (3)[/tex]
Calculate r(3) and s(3)
[tex]r(3) = 2\sqrt 3[/tex]
[tex]s(3) = \sqrt 3[/tex]
So, we have:
[tex](r/s)(3) = r(3) \div (3)[/tex]
[tex](r/s)(3) = 2\sqrt 3 \div \sqrt 3[/tex]
[tex](r/s)(3) = 2[/tex]
Read more about composite functions at:
https://brainly.com/question/10830110