Respuesta :

8, 15, 24 because their simplified forms are not 234

Answer:

[tex]{8, 15, 24}[/tex]

Step-by-step explanation:

In this problem we have a ratio with [tex]3[/tex] numbers

so

Let

x------> the first number

y-----> the second number

z-----> the third number

we know that

[tex]\frac{x}{y}=\frac{2}{3}[/tex] ------> equation A

[tex]\frac{x}{z}=\frac{2}{4}[/tex] ------> equation B

[tex]\frac{y}{z}=\frac{3}{4}[/tex] ------> equation C

Verify each case

case A) [tex]{8, 15, 24}[/tex]

[tex]x=8, y=15,z=24[/tex]

Substitute in the equations

[tex]\frac{x}{y}=\frac{8}{15}[/tex]

[tex]\frac{8}{15}\neq \frac{2}{3}[/tex]

therefore

The case A) not have a ratio of [tex]2:3:4[/tex]

case B) [tex]{2x,3x,4x}[/tex]

[tex]x=2x, y=3x,z=4x[/tex]

Substitute in the equations

[tex]\frac{x}{y}=\frac{2x}{3x}=\frac{2}{3}[/tex]  

[tex]\frac{x}{z}=\frac{2x}{4x}=\frac{2}{4}[/tex]

[tex]\frac{y}{z}=\frac{3x}{4x}=\frac{3}{4}[/tex]

therefore

The case B) have a ratio of [tex]2:3:4[/tex]

case C) [tex]{6m^{2},9m^{2},12m^{2}}[/tex]

[tex]x=6m^{2}, y=9m^{2},z=12m^{2}[/tex]

Substitute in the equations

[tex]\frac{x}{y}=\frac{6m^{2}}{9m^{2}}=\frac{2}{3}[/tex]  

[tex]\frac{x}{z}=\frac{6m^{2}}{12m^{2}}=\frac{2}{4}[/tex]

[tex]\frac{y}{z}=\frac{9m^{2}}{12m^{2}}=\frac{3}{4}[/tex]

therefore

The case C) have a ratio of [tex]2:3:4[/tex]