Respuesta :

[tex]\sqrt{\cfrac{6}{5}}\impliedby \textit{simplified, right?}[/tex]

for... is more or less simplified, so.. .it can't be simplified any further
if anything at all, it can simply be "rationalized"
namely

[tex]\sqrt{\cfrac{6}{5}}\implies \cfrac{\sqrt{6}}{\sqrt{5}}\impliedby \textit{now rationalizing it} \\ \quad \\ \cfrac{\sqrt{6}}{\sqrt{5}}\cdot \cfrac{\sqrt{5}}{\sqrt{5}}\implies \cfrac{\sqrt{6}\sqrt{5}}{\sqrt{5^2}}\implies \cfrac{\sqrt{30}}{5}[/tex]

Answer:

[tex]\frac{\sqrt{30} }{5}[/tex]

Step-by-step explanation: