The function h(x) is given below.

h(x) = {(3, –5), (5, –7), (6, –9), (10, –12), (12, –16)}

Which of the following gives h–1(x)?

1.{(3, 5), (5, 7), (6, 9), (10, 12), (12, 16)}
2.{(–5, 3), (–7, 5), (–9, 6), (–12, 10), (–16, 12)}
3.{(3, –5), (5, –7), (6, –9), (10, –12), (12, –16)}
4.{(5, 3), (7, 5), (9, 6), (12, 10), (16, 12)}

Respuesta :

B.) {(–5, 3), (–7, 5), (–9, 6), (–12, 10), (–16, 12)} 

-YourWeclome ;)

Answer:

2. {(-5, 3), (-7, 5), (-9, 6), (-12, 10), (-16, 12)}

Step-by-step explanation:

If f is an invertible function with domain X and range Y, then its inverse [tex]f^{-1}[/tex] has domain Y and range X.

Domain of h(x) = {3, 5, 6, 10, 12}

Range of h(x)   = {-5, -7, -9, -12, -16}

So,

Domain of [tex]h^{-1}(x)[/tex] = {-5, -7, -9, -12, -16}

Range of [tex]h^{-1}(x)[/tex]   = {3, 5, 6, 10, 12}

Hence, [tex]h^{-1}(x)[/tex] will be,

{(-5, 3), (-7, 5), (-9, 6), (-12, 10), (-16, 12)}