Respuesta :

The given function is
f(x) = (3/7) 2^x
And it is to be reflected over the x-axis. This means that the function will have an opposite sign or -f(x). The resulting function after the reflections is
-f(x) = -(3/7) 2^x

When a function is reflected, it must be reflected over a line.

The function that represents a reflection over the x-axis is: [tex]\mathbf{g(x) = -\frac{3}{7}(2)^x}[/tex]

The function is given as:

[tex]\mathbf{f(x) = \frac{3}{7}(2)^x}[/tex]

The rule of reflection over the x-axis is:

[tex]\mathbf{(x,y) \to (x,-y)}[/tex]

So, we have:

[tex]\mathbf{g(x) = -f(x)}[/tex]

This gives:

[tex]\mathbf{g(x) = -\frac{3}{7}(2)^x}[/tex]

Hence, the function that represents a reflection over the x-axis is: [tex]\mathbf{g(x) = -\frac{3}{7}(2)^x}[/tex]

Read more about reflections at:

https://brainly.com/question/938117