Respuesta :

Answer to Question #13

See the analysis

[tex]Petermine\ the\ opposite\ side\\ to\ the\ angle\ and\ the\ adjacent\\ Side[/tex]

[tex]tan\propto=\frac{opposite}{adjacent}[/tex]

Answer to Question #11

Answer: see the analysis.

[tex]Solution:\\ The\ sine\ of\ an\ angle\ is\ the\ ratio\ of\ Opposite\ to\ Hypotenuse.\\ So,\ we\ can\ use\ the\ formula\ \sin{\theta}=\frac{Opposite}{Hypotenuse}to\ calculate\ the\ sine\ of\\ an\ angle\ in\ a\ right\ triangle.[/tex]

Answer to Question that asked "How would your results change if you used Angle B Instead of Angle A?"

Ans No Change

[tex]Ans\ No\ change\\ After\ changing\ A\ to\ B\ no\ change\ will\\ be\ there[/tex]

Answer to Question #12

the ansurer is

cose C = Base/Hypitenuse = BC/AC

[tex]Solution:\\ cosine\ of\ angle\ is\ the\\ Natis\ of\ base\ to\ the\\ lypotenuse\ of\ the\ friangle\\ cos\ C=\frac{BC}{AC}[/tex]

I hope this helps you!

:)

Ver imagen palazzolorachel
Ver imagen palazzolorachel
Ver imagen palazzolorachel