Respuesta :

Answer:

a = 17

Step-by-step explanation:

using the cosine ratio in the right triangle and the exact value

cos45° = [tex]\frac{1}{\sqrt{2} }[/tex] , then

cos45° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{a}{17\sqrt{2} }[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )

a × [tex]\sqrt{2}[/tex] = 17[tex]\sqrt{2}[/tex] ( divide both sides by [tex]\sqrt{2}[/tex] )

a = 17

b = 17 since the legs of an isosceles triangle are congruent