NO LINKS!!! Solve each triangle. Part 2a
NOT A MULTIPLE CHOICE

1a. A= 40°, B= 20, a= 2
2b. A= 50°, C= 20°, a= 3
3c. B= 70°, C= 10°, b= 5
4d. A= 70°, B= 60°, c= 4

Respuesta :

Answer:

Sum of interior angles of a triangle = 180°

Sine rule to find side lengths:

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

----------------------------------------------------------------------

Question 1a

Given: A = 40°, B = 20°, a = 2

40° + 20° + C = 180°

C = 120°

[tex]\dfrac{2}{\sin 40}=\dfrac{b}{\sin 20}=\dfrac{c}{\sin 120}[/tex]

[tex]\implies b=\sin20 \cdot\dfrac{2}{\sin 40}=1.064177772...[/tex]

[tex]\implies c=\sin 120 \cdot \dfrac{2}{\sin 40}=2.694592711...[/tex]

----------------------------------------------------------------------

Question 2b

Given: A = 50°, C = 20°, a = 3

50° + 20° + B = 180°

B = 110°

[tex]\dfrac{3}{\sin 50}=\dfrac{b}{\sin 110}=\dfrac{c}{\sin 20}[/tex]

[tex]\implies b=\sin 110 \cdot\dfrac{3}{\sin 50}=3.680044791...[/tex]

[tex]\implies c=\sin 20 \cdot\dfrac{3}{\sin 50}=1.339426765...[/tex]

----------------------------------------------------------------------

Question 3c

Given: B = 70°, C = 10°, b = 5

70° + 10° + A = 180°

A = 100°

[tex]\dfrac{a}{\sin 100}=\dfrac{5}{\sin 70}=\dfrac{c}{\sin 10}[/tex]

[tex]\implies a=\sin 100 \cdot \dfrac{5}{\sin 70}=5.240052605...[/tex]

[tex]\implies c=\sin 10 \cdot \dfrac{5}{\sin 70}=0.9239626545...[/tex]

----------------------------------------------------------------------

Question 4d

Given: A = 70°, B = 60°, c = 4

70° + 60° + C = 180°

C = 50°

[tex]\dfrac{a}{\sin 70}=\dfrac{b}{\sin 60}=\dfrac{4}{\sin 50}[/tex]

[tex]\implies a=\sin 70 \cdot \dfrac{4}{\sin 50}=4.906726388...[/tex]

[tex]\implies b=\sin 60 \cdot \dfrac{4}{\sin 50}=4.522063499...[/tex]