Given :-
[tex] \\ \\ [/tex]
To find :-
[tex] \\ \\ [/tex]
We know:-
[tex] \boxed{ \rm\dfrac{E_s}{E_p}=\dfrac{N_s}{N_p}}[/tex]
where :-
[tex] \\ \\ [/tex]
So:-
[tex] \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{E_p}=\dfrac{N_s}{N_p}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{8}{800}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{8}{8 \times 100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{\cancel8}{\cancel8 \times 100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{1}{100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{1}=\dfrac{220}{100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{E_s}=\dfrac{220}{100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{E_s}=\dfrac{22\cancel0}{10\cancel0}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{E_s}=\dfrac{22}{10}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\bf{E_s}=2.2 \: volt[/tex]