Respuesta :

Solution:

~Refer to image~

We know that:

[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \text{Area of triangle} \times \text{a}[/tex]

[tex]\bullet \ \ \ \text{Area of triangle} = \dfrac{1}{2} \times \text{Base} \times \text{Altitude }[/tex]

When looking at the triangle, we can tell that:

[tex]\bullet \ \ \ \text{Base} = 8 \ \text{ft} \\\\ \bullet \ \ \text{Altitude} = 6 \ \text{ft} \\\\ \bullet \ \ \text{a} = 12 \ \text{ft}[/tex]

Substitute the base, height, and altitude in the formula:

[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \text{Area of triangle} \times \text{a}[/tex]

[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \huge{\text{[}\dfrac{1}{2} \times 8 \times 6\huge{\text{]} \times 12[/tex]

Solve for the volume:

[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \huge{\text{[}4 \times 6\huge{\text{]} \times 12[/tex]

[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \huge{\text{[}24\huge{\text{]} \times 12[/tex]

[tex]\bullet \ \ \ \boxed{\text{Volume of right triangular prism} = 288 \ \text{ft}^{3} }[/tex]

Ver imagen Аноним

Area of base:-

  • 1/2BH
  • 1/2(6)(8)
  • 3(8)
  • 24ft^2

Volume:-

  • Area of base×Height
  • 24(12)
  • 288ft^3