help me please its due today

Solution:
~Refer to image~
We know that:
[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \text{Area of triangle} \times \text{a}[/tex]
[tex]\bullet \ \ \ \text{Area of triangle} = \dfrac{1}{2} \times \text{Base} \times \text{Altitude }[/tex]
When looking at the triangle, we can tell that:
[tex]\bullet \ \ \ \text{Base} = 8 \ \text{ft} \\\\ \bullet \ \ \text{Altitude} = 6 \ \text{ft} \\\\ \bullet \ \ \text{a} = 12 \ \text{ft}[/tex]
Substitute the base, height, and altitude in the formula:
[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \text{Area of triangle} \times \text{a}[/tex]
[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \huge{\text{[}\dfrac{1}{2} \times 8 \times 6\huge{\text{]} \times 12[/tex]
Solve for the volume:
[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \huge{\text{[}4 \times 6\huge{\text{]} \times 12[/tex]
[tex]\bullet \ \ \ \text{Volume of right triangular prism} = \huge{\text{[}24\huge{\text{]} \times 12[/tex]
[tex]\bullet \ \ \ \boxed{\text{Volume of right triangular prism} = 288 \ \text{ft}^{3} }[/tex]
Area of base:-
Volume:-