Respuesta :

Answer:

[tex]( - 0.5 , - 4.5 )[/tex]

Step-by-step explanation:

Rewrite the equation in vertex form.

Complete the square for

[tex]2 {x}^{2} + 2x - 4[/tex]

Use the form

[tex]a {x}^{2} + bx + c[/tex]

to find the values of a, b, and c.

a = 2

b = 2

c = −4

Consider the vertex form of a parabola.

[tex]a(x + d) ^{2} + e[/tex]

Find the value of d using the formula

[tex]d = \frac{b}{2a} [/tex]

[tex]d = \frac{1}{2} [/tex]

Find the value of e using the formula

[tex]e = c - \frac{ {b}^{2} }{4a} [/tex]

[tex]e = - \frac{9}{2} [/tex]

Substitute the values of a, d, and e into the vertex form

[tex]2(x + \frac{1}{2} ) ^{2} - \frac{9}{2} [/tex]

Set y equal to the new right side.

[tex]y = {2(x + \frac{1}{2}) }^{2} - \frac{9}{2} [/tex]

Use the vertex form, 

[tex]y = a(x - h) ^{2} + k[/tex]

to determine the values of a, h, and k.

a = 2

h = -1/2

k = -9/2

Find the vertex (h,k).

[tex]( - \frac{1}{2} , - \frac{9}{2} )[/tex]