Respuesta :

The true solution of the  [tex]\rm 3log2+log8=2log(4x)[/tex]  is 2.

It is given that the:

[tex]\rm 3log2+log8=2log(4x)[/tex]

It is required to find the value of [tex]\rm x[/tex].

What is Logarithm?

It is another way to represent the power of numbers ie.

[tex]\rm a^b=c\\\rm log_ac=b[/tex]

Some properties of  Logarithm:

[tex]\rm logx+logy=log(xy)\\\rm x logy=logy^x[/tex]

We have:

[tex]\rm 3log2+log8=2log(4x)\\\\\rm By \ using \ properties \ of \ Logarithm\\\\\rm log2^3+log8=log(4x)^2\\\rm log(8\times8)=log16x^2\\\rm log64=log16x^2\\\rm 64=16x^2\\\rm 4=x^2\\x=2[/tex]

Thus, the true solution of the given expression is 2.

Learn more about the Logarithm here:

https://brainly.com/question/163125

Answer: B

Step-by-step explanation:

Simple because Im the man the simple