Respuesta :
The true solution of the [tex]\rm 3log2+log8=2log(4x)[/tex] is 2.
It is given that the:
[tex]\rm 3log2+log8=2log(4x)[/tex]
It is required to find the value of [tex]\rm x[/tex].
What is Logarithm?
It is another way to represent the power of numbers ie.
[tex]\rm a^b=c\\\rm log_ac=b[/tex]
Some properties of Logarithm:
[tex]\rm logx+logy=log(xy)\\\rm x logy=logy^x[/tex]
We have:
[tex]\rm 3log2+log8=2log(4x)\\\\\rm By \ using \ properties \ of \ Logarithm\\\\\rm log2^3+log8=log(4x)^2\\\rm log(8\times8)=log16x^2\\\rm log64=log16x^2\\\rm 64=16x^2\\\rm 4=x^2\\x=2[/tex]
Thus, the true solution of the given expression is 2.
Learn more about the Logarithm here:
https://brainly.com/question/163125
Answer: B
Step-by-step explanation:
Simple because Im the man the simple