Need help!
v varies directly as the square of x and inversely as the cube of y. Find v when x=3 and y=2, given that v=2 when x=4 and y=3

Respuesta :

Step-by-step explanation:

If two objects vary directly, we just divide those two objects.

If two objects vary indirectly, we multiply them.

So here we have

[tex] \frac{v}{ {x}^{2} } {y}^{3} = k[/tex]

where k is a constant.

So let analyze when all variables Except k is given.

[tex] \frac{2}{16} (27) = 3.375[/tex]

So k=3.375

[tex] \frac{v}{ {3}^{2} } (2 {}^{3} ) = 3.375[/tex]

[tex] \frac{v}{9} (8) = 3.375[/tex]

[tex] \frac{v}{9} (8) = \frac{27}{8} [/tex]

[tex]v8 = \frac{243}{8} [/tex]

[tex]v = \frac{243}{64} [/tex]

[tex]3.796875[/tex]