If the circumference of a circle is increased by 40%,
then the area of the circle is increased by
A. 18%. B. 20%. C. 40%. D. 96%.

Respuesta :

Answer:

96%

Step-by-step explanation:

c=100=22/7D

D=7/22×100

get the radius and find the area

R=D/2

A=pi×r^2

repeat that assuming

C=140

get the area

find the %age

A2_A1=Area difference

A(diff)/A1×100=96.01%

[tex]r_{2}[/tex]Answer:

D) 96%

Step-by-step explanation:

let the circumference of circle be C = 2π[tex]r_{1}[/tex] and   [tex]r_{1}[/tex] =   [tex]d_{1}[/tex]/2

Initial radius (radius before increment) = [tex]r_{1}[/tex]

initial diameter (diameter before increment) = [tex]d_{1}[/tex]

Increasing the circumference of a circle other factors are constant except the radius which can be used to find the diameter hence increasing the circumference of a circle is equivalent to increasing the diameter

area of the circle before increment [tex]A_{1}[/tex] = π[tex]r_{1}[/tex]²

[tex]A_{1}[/tex] = π × ([tex]d_{1}[/tex]/2)²

[tex]A_{1}[/tex] = π[tex]d_{1}[/tex]²/4

Increment of circumference results to increment of only the diameter

diameter after increment by 40%, [tex]d_{2}[/tex] = 1.4[tex]d_{1}[/tex]

1.4 represents increment by 40%

radius after increment [tex]r_{2}[/tex]  =  [tex]d_{2}[/tex]/2 = 1.4[tex]d_{1}[/tex]/2 = 0.7[tex]d_{1}[/tex]

area after increment, [tex]A_{2}[/tex] = π[tex]r^{2} _{2}[/tex]

[tex]A_{2}[/tex] = π(0.7[tex]d_{1}[/tex])²

[tex]A_{2}[/tex] = π × 0.49[tex]d_{1}[/tex]²

Change in area =  [tex]A_{2}[/tex] - [tex]A_{1}[/tex]  

[tex]A_{2}[/tex] - [tex]A_{1}[/tex] = π ×  0.49[tex]d_{1}[/tex]² - π [tex]d_{1}[/tex]²/4

[tex]A_{2}[/tex] - [tex]A_{1}[/tex]  = π [tex]d_{1}[/tex]²(0.49 - ¼)

[tex]A_{2}[/tex] - [tex]A_{1}[/tex]  = π [tex]d_{1}[/tex]²(0.49 - 0.25)

[tex]A_{2}[/tex] - [tex]A_{1}[/tex]   = 0.24 π[tex]d_{1}[/tex]²

Percentage increment = ([tex]A_{2}[/tex] - [tex]A_{1}[/tex]/ [tex]A_{1}[/tex]) × 100

= ((0.24 π[tex]d_{1}[/tex]²)/(π[tex]d_{1}[/tex]²/4)) × 100

= (0.24 × 4 ) × 100

= 0.96 × 100

= 96 %  

 

Hope it was useful