Respuesta :

Answer:

The inverse is  5±sqrt(x+25)

Step-by-step explanation:

y = x^2 - 10x

To find the inverse, exchange x and y and solve for y

x = y^2 -10y

Complete the square

x+25 = y^2 -10y +25

x+25 = (y-5)^2

Take the square root of each side

±sqrt(x+25) = y-5

Add 5 to each side

5±sqrt(x+25) = y

The inverse is  5±sqrt(x+25)

Answer:

[tex]y=\pm\sqrt{x+25}+5[/tex]

Step-by-step explanation:

Given function:

[tex]y=x^2-10x[/tex]

Rearrange to make [tex]x[/tex] the subject.

First, complete the square by adding 25 to both sides and factoring:

[tex]y+25=x^2-10x+25[/tex]

[tex]y+25=(x-5)^2[/tex]

Square root both sides:

[tex]\pm\sqrt{y+25}=x-5[/tex]

Add 5 to both sides:

[tex]x=\pm\sqrt{y+25}+5[/tex]

Finally, swap [tex]x[/tex] and [tex]y[/tex] (since the inverse of a function is its reflection in the line [tex]y = x[/tex])

[tex]y=\pm\sqrt{x+25}+5[/tex]