Respuesta :
- Shifted left 2 units(Change in x y remains constant
Lets shift
[tex]\\ \rm\Rrightarrow f(x)=x^2[/tex]
[tex]\\ \rm\Rrightarrow g(x)=(x+2)^2[/tex]
[tex]\\ \rm\Rrightarrow g(x)=x^2+2x+4[/tex]
Answer:
g(x) = (x + 2)²
Step-by-step explanation:
In function notation, if we want to shift a function to the left, we add the number we are asked to move to the left inside the function's argument:
⇒ To shift f(x) b units to left → f(x + b)
Similarly, if we want to shift a function to the right, we subtract the number we are asked to move to the right inside the function's argument:
⇒ To shift f(x) b units to right → f(x - b)
Given function f(x) = x²
Shift 2 units to the left: f(x + 2) = (x + 2)²
Therefore, g(x) = (x + 2)²