Which equation for g(x) represents the transformation of f(x) given that f(x) = x^2
g(x) = f(x) shifted left 2 units?


PLEASE HELPPP

Respuesta :

  • Shifted left 2 units(Change in x y remains constant

Lets shift

[tex]\\ \rm\Rrightarrow f(x)=x^2[/tex]

[tex]\\ \rm\Rrightarrow g(x)=(x+2)^2[/tex]

[tex]\\ \rm\Rrightarrow g(x)=x^2+2x+4[/tex]

Answer:

g(x) = (x + 2)²

Step-by-step explanation:

In function notation, if we want to shift a function to the left, we add the number we are asked to move to the left inside the function's argument:

⇒ To shift f(x) b units to left → f(x + b)

Similarly, if we want to shift a function to the right, we subtract the number we are asked to move to the right inside the function's argument:

⇒ To shift f(x) b units to right → f(x - b)

Given function f(x) = x²

Shift 2 units to the left:  f(x + 2) = (x + 2)²

Therefore, g(x) = (x + 2)²