Find the missing information for the triangle.
*not drawn to scale
• Make sure to find the missing angle measure and the 2 missing side
lengths.

Find the missing information for the triangle not drawn to scale Make sure to find the missing angle measure and the 2 missing side lengths class=

Respuesta :

missing angle:

180° - 90° - 30°

180° - 120°

60°

missing sides:

(a)

[tex]\rightarrow \sf tan(x)= \dfrac{opposite}{adjacent}[/tex]

[tex]\rightarrow \sf tan(30)= \dfrac{4}{adjacent}[/tex]

[tex]\rightarrow \sf adjacent= \dfrac{4}{tan(30)}[/tex]

[tex]\rightarrow \sf adjacent= 4\sqrt{3}[/tex]

[tex]\rightarrow \sf adjacent= 6.93 \ cm[/tex]

(b)

[tex]\sf \rightarrow sin(x)= \dfrac{opposite}{hypotensue}[/tex]

[tex]\sf \rightarrow sin(30)= \dfrac{4}{hypotensue}[/tex]

[tex]\sf \rightarrow hypotensue= \dfrac{4}{ sin(30)}[/tex]

[tex]\sf \rightarrow hypotensue= 8 \ cm[/tex]

Answer:

m∠X = 60°

BX = 8 cm

BM = 4√3 cm

Step-by-step explanation:

The sum of the interior angles of a triangle is 180°

Given:

  • m∠B = 30°
  • m∠M = 90°

⇒ m∠B + m∠M + m∠X = 180°

⇒ 30° + 90° + m∠X = 180°

⇒ 120° + m∠X = 180°

⇒  m∠X = 180° - 120°

⇒  m∠X = 60°

Using the sine rule to find the side lengths:

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

(where A, B and C are the angles, and a, b and c are the sides opposites the angles)

Given:

  • m∠X = 60°
  • m∠B = 30°
  • m∠M = 90°
  • MX = 4 cm

[tex]\implies \dfrac{4}{\sin 30\textdegree}=\dfrac{BX}{\sin 90\textdegree}=\dfrac{BM}{\sin 60\textdegree}[/tex]

[tex]\implies BX=\sin 90\textdegree \cdot\dfrac{4}{\sin 30\textdegree}[/tex]

              [tex]=1 \cdot \dfrac{4}{\frac12}[/tex]

              [tex]=1 \cdot 4 \cdot 2[/tex]

              [tex]=8 \textsf{ cm}[/tex]

[tex]\implies BM=\sin 60\textdegree \cdot\dfrac{4}{\sin 30\textdegree}[/tex]

              [tex]=\dfrac{\sqrt{3}}{2}\cdot \dfrac{4}{\frac12}[/tex]

              [tex]=\dfrac{\sqrt{3}}{2}\cdot 4 \cdot 2[/tex]

              [tex]=4\sqrt{3} \textsf{ cm}[/tex]