Respuesta :

As we know that the area of an equilateral triangle with side a is given by ;

  • [tex]{\boxed{\bf{Area_{(equilateral)}=\dfrac{\sqrt{3}}{4}a^{2}}}}[/tex]

So , now using formula in our question, putting the value of the side, we can thus obtain

[tex]{:\implies \quad \sf Area=\dfrac{\sqrt{3}}{4}(16)^{2}}[/tex]

Putting value of √3 ≈ 1.73 and cancelling 4 we have ;

[tex]{:\implies \quad \sf Area\approx 1.73\times 64}[/tex]

[tex]{:\implies \quad \sf Area\approx 110.72\:\: cm^{2}}[/tex]

[tex]{:\implies \quad \sf Area\approx 110.7\:\: cm^{2}}[/tex]

This is the required answer