Use the equation, (1/27)^x=3^(-4x+6), to complete the following problems.
Rewrite the equation using the same base.
Solve for x. Write your answer as a fraction in simplest form.
Please show all work, and refrain from posting links, thank you!

Respuesta :

Answer:

Given equation:

[tex]\left(\dfrac{1}{27}\right)^x=3^{(-4x+6)}[/tex]

27 can be written as [tex]3^3[/tex]

Also [tex]\dfrac{1}{a^b}[/tex] can be written as [tex]a^{-b}[/tex]

[tex]\implies \dfrac{1}{27}=\dfrac{1}{3^3}=3^{-3}[/tex]

Therefore, we can rewrite the given equation with base 3:

[tex]\implies (3^{-3})^x=3^{(-4x+6)}[/tex]

To solve, apply the exponent rule [tex](a^b)^c=a^{bc}[/tex]

[tex]\implies 3^{-3 \cdot x}=3^{(-4x+6)}[/tex]

[tex]\implies 3^{(-3x)}=3^{(-4x+6)}[/tex]

[tex]\textsf{If }a^{f(x)}=a^{g(x)}, \textsf{ then } f(x)=g(x)[/tex]

[tex]\implies -3x=-4x+6[/tex]

Add [tex]4x[/tex] to both sides:

[tex]\implies x=6[/tex]