Respuesta :

Answer:

[tex]\mathsf{y=-\dfrac13x+5}[/tex]

Step-by-step explanation:

Slope-intercept form of a linear equation:  [tex]\mathsf{y=mx+b}[/tex]

(where m is the slope and b is the y-intercept)

From inspection of the graph, the y-intercept is at (0, 5)

Therefore, b = 5

Choose another point on the line, e.g. (3, 4)

Now use the slope formula to find the slope:

[tex]\mathsf{slope=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]

where:

  • [tex]\mathsf{(x_1,y_1)=(0,5)}[/tex]
  • [tex]\mathsf{(x_2,y_2)=(3,4)}[/tex]

[tex]\implies \mathsf{slope=\dfrac{5-4}{0-3}=-\dfrac13}[/tex]

Therefore, the equation of the line is:

[tex]\mathsf{y=-\dfrac13x+5}[/tex]

Answer:

[tex]y=-\frac{1}{3} + 5[/tex]

Step-by-step explanation:

  1. Pick two points (0,5) & (3,4)
  2. find the slope  [tex]m= \frac{y_{2} - y_1 }{x_2 - x_1}[/tex] >> [tex]m = \frac{4-5}{3-0} = -\frac{1}{3}[/tex]
  3. Find y-intercept (where x is 0) >> y = 5