Respuesta :

The expressions are illustrations of rational exponent expressions

The equivalent expressions are [tex](8x)^\frac 12 = 2\sqrt{2x[/tex], [tex]6z^\frac 12 = 6\sqrt z[/tex] and [tex]\sqrt{19} = 19^\frac 12[/tex]

How to simplify the rational exponent expressions?

From the complete question (see attachment), we are to simplify or rewrite the following expressions

[tex](8x)^\frac 12[/tex]

[tex]6z^\frac 12[/tex]

[tex]\sqrt{19[/tex]

For [tex](8x)^\frac 12[/tex], we simply apply the exponent rule of indices

[tex](8x)^\frac 12 = \sqrt{8x[/tex]

Express 8 as 4 * 2

[tex](8x)^\frac 12 = \sqrt{4 * 2x[/tex]

Take the square root of 4

[tex](8x)^\frac 12 = 2\sqrt{2x[/tex]

For [tex]6z^\frac 12[/tex], we apply the exponent rule of indices

[tex]6z^\frac 12 = 6\sqrt z[/tex]

For [tex]\sqrt{19[/tex], we apply the the same rule

[tex]\sqrt{19} = 19^\frac 12[/tex]

Hence, the equivalent expressions are [tex](8x)^\frac 12 = 2\sqrt{2x[/tex], [tex]6z^\frac 12 = 6\sqrt z[/tex] and [tex]\sqrt{19} = 19^\frac 12[/tex]

Read more about rational exponents at:

https://brainly.com/question/535578

Ver imagen MrRoyal