100 POINTS !!! Find the axis of symmetry and the vertex of the graph of y = 6x2 − 24x + 11. x = 2; (2, −13) x = 4; (4, 11) x = −2; (−2, 83) x = −4; (−4, −11)

Respuesta :

Let's see

[tex]\\ \rm\rightarrowtail y=6x^2-25x+11[/tex]

Graph attached

  • vertex(-2,-13)

Axis of symmetry

  • x=-2
Ver imagen Аноним

Answer:

axis of symmetry: x = 2

vertex:  (-2, 13)

Step-by-step explanation:

Given function

[tex]\sf y=6x^2-24x+11[/tex]

Vertex form

[tex]\sf y=a(x-h)^2+k[/tex]
where (h, k) is the vertex

Expand vertex form:

[tex]\sf \implies y=ax^2-2ahx+ah^2+k[/tex]

Compare coefficients of expanded vertex form with given function:

coefficient of [tex]\sf x^2[/tex]:  

⇒ a = 6

coefficient of [tex]\sf x[/tex]:  

⇒ -2ah = -24

⇒ ah = 12

⇒ 6h = 12

⇒ h = 2

constant:

⇒ [tex]\sf ah^2+k=11[/tex]

⇒ [tex]\sf 6 \cdot 2^2+k=11[/tex]

⇒ [tex]\sf 24+k=11[/tex]

⇒ [tex]\sf k=-13[/tex]

Vertex

Vertex = (2, -13)

Axis of symmetry

Axis of symmetry is when x = h

Therefore, axis of symmetry is x = 2