Respuesta :
Let's see
[tex]\\ \rm\rightarrowtail y=6x^2-25x+11[/tex]
Graph attached
- vertex(-2,-13)
Axis of symmetry
- x=-2

Answer:
axis of symmetry: x = 2
vertex: (-2, 13)
Step-by-step explanation:
Given function
[tex]\sf y=6x^2-24x+11[/tex]
Vertex form
[tex]\sf y=a(x-h)^2+k[/tex]
where (h, k) is the vertex
Expand vertex form:
[tex]\sf \implies y=ax^2-2ahx+ah^2+k[/tex]
Compare coefficients of expanded vertex form with given function:
coefficient of [tex]\sf x^2[/tex]:
⇒ a = 6
coefficient of [tex]\sf x[/tex]:
⇒ -2ah = -24
⇒ ah = 12
⇒ 6h = 12
⇒ h = 2
constant:
⇒ [tex]\sf ah^2+k=11[/tex]
⇒ [tex]\sf 6 \cdot 2^2+k=11[/tex]
⇒ [tex]\sf 24+k=11[/tex]
⇒ [tex]\sf k=-13[/tex]
Vertex
Vertex = (2, -13)
Axis of symmetry
Axis of symmetry is when x = h
Therefore, axis of symmetry is x = 2