hello help me with this question thanks in advance

[tex]\bold{\huge{\underline{ Solution \:1}}}[/tex]
If we look at the both the triangles then the
From above, we can conclude that :-
Both the triangles are similar by AA Similarity
Hence, Option A is correct.
[tex]\bold{\huge{\underline{ Solution \:2}}}[/tex]
Let consider the given triangle be ABC and the line that divides the triangle consider it as DE
So,
We have to find the value of x
In ΔABC, By using BPT theorem
That is,
[tex]\sf{\dfrac{ AD }{ AB }}{\sf{ = }}{\sf{\dfrac{DE}{BC}}}[/tex]
Subsitute the required values,
[tex]\sf{\dfrac{ 6 }{ 6 + 4 }}{\sf{ = }}{\sf{\dfrac{8}{x}}}[/tex]
[tex]\sf{\dfrac{ 6 }{ 10 }}{\sf{ = }}{\sf{\dfrac{8}{x}}}[/tex]
[tex]\sf{\dfrac{ 3 }{ 5 }}{\sf{ = }}{\sf{\dfrac{8}{x}}}[/tex]
[tex]{\sf{ x = 8{\times} }}{\sf{\dfrac{5}{3}}}[/tex]
[tex]{\sf{ x = }}{\sf{\dfrac{40}{3}}}[/tex]
[tex]{\sf{ x = 13}}{\sf{\dfrac{1}{3}}}[/tex]
Hence, Option C is correct
[tex]\bold{\huge{\underline{ Solution \:3}}}[/tex]
Here,
For x,
By using BPT theorem,
[tex]\sf{\dfrac{ AB }{ RS }}{\sf{ = }}{\sf{\dfrac{BC}{ST}}}[/tex]
Subsitute the required values,
[tex]\sf{\dfrac{ 2 }{ 4 }}{\sf{ = }}{\sf{\dfrac{x}{6}}}[/tex]
[tex]\sf{\dfrac{ 1 }{ 2 }}{\sf{ = }}{\sf{\dfrac{x}{6}}}[/tex]
[tex]\sf{ x = }{\sf{\dfrac{6}{2}}}[/tex]
[tex]\sf{ x = 3 }[/tex]
Thus, The value of x is 3
For y
Again by using BPT theorem,
[tex]\sf{\dfrac{ AB }{ RS }}{\sf{ = }}{\sf{\dfrac{AC}{RT}}}[/tex]
Subsitute the required values,
[tex]\sf{\dfrac{ 2 }{ 4 }}{\sf{ = }}{\sf{\dfrac{5}{y}}}[/tex]
[tex]\sf{\dfrac{ 1 }{ 2 }}{\sf{ = }}{\sf{\dfrac{5}{y}}}[/tex]
[tex]\sf{ y = 5{\times}2 }[/tex]
[tex]\sf{ y = 10 }[/tex]
Thus, The value of y is 10
Hence, Option A is correct.