Respuesta :

[tex] ln({x}^{3} - 4x) - ln(x {}^{2} - 2x ) [/tex]

can be written as;

[tex] ln( \frac{ {x}^{3} - 4x }{ {x}^2 - 2x } ) [/tex]

[tex] ln( \frac{x( {x}^{2 } - 4) }{x(x - 2)} ) = ln( \frac{x(x - 2)(x + 2)}{x(x - 2)} ) [/tex]

Now all you have to do, is divide the numerator and denominator by x and by (x-2)

to get,

[tex] ln( \frac{x(x - 2)(x + 2)}{x(x - 2)} ) = ln( \frac{x + 2}{1} ) = ln(x + 2) [/tex]

We proved that ln(-4x)-ln(-2) is equal to ln(x+2) :)