Respuesta :

Answer: 909.03

Step-by-step explanation:

We know that the equation is an exponential function, it can be written as y=ab^x

[tex]100 &=a b^{6.5} \dots \mathrm{Equation \ 1} \\11 &= a b^{1} \\[/tex]

[tex]\Rightarrow ab^1=11[/tex]

[tex]\Rightarrow \frac{ab^1}{b}=\frac{11}{b};\quad \:b\ne \:0[/tex]

[tex]\Rightarrow a=\frac{11}{b}[/tex]

a = 11/b, substitute it in equation 1

[tex]100 &=a b^{6.5}[/tex]

[tex]\Rightarrow 100=\left(\frac{11}{b}\right)b^{6.5}[/tex]

[tex]\Rightarrow 100b=11b^\frac{11}{2}[/tex]

[tex]\Rightarrow 11\sqrt{b^{11} } =100b[/tex]

[tex]\Rightarrow \sqrt{b^{11} } =\frac{100}{11}}[/tex]

[tex]\Rightarrow \sqrt{b^{11} } =\frac{100}{11}}[/tex]

[tex]\Rightarrow {b^{11} } =\frac{10000}{121}}[/tex]

[tex]\Rightarrow {b} =\frac{\sqrt[11]{10000 \cdot 11^9} }{11}[/tex]

[tex]\Rightarrow {b} = 1.49379[/tex]

a = 11/b

a = 11/(1.49379)

a = 7.36382

Equation: y = (7.36382)(1.49379)^x

Now plug in 12 for x:
[tex]\Rightarrow { \left(7.36382\right)\left(1.49379\right)^{12}[/tex]

[tex]\Rightarrow 7.36382\cdot \:1.49379^{12}[/tex]

[tex]\Rightarrow 7.36382\cdot \:123.44530\dots[/tex]

[tex]\Rightarrow 909.03[/tex]

Therefore, f(12) = 909.03 for the exponential function