Respuesta :

Answer:

Step-by-step explanation:

17) In parallelogram, adjacent angles are supplementary (add up to 180)

⇒∠A +  ∠D = 180

5x + 30 + x = 180  

5x +x + 30 = 180    {Combine like terms}

     6x + 30 = 180 {Now, subtract 30 from both sides}

6x + 30 - 30 = 180 - 30

             6x  = 150

Now divide both sides by 6

              x = 150/6

              x = 25

∠A = 5x + 30

     = 5*25 + 30

     = 125 + 30

     = 155

In parallelogram, opposite angles are congruent.

∠C = ∠A

∠C = 155°

18)In parallelogram, adjacent angles are supplementary (add up to 180)

⇒∠A +  ∠D = 180

3x + 4 + x = 180  

3x +x + 4 = 180    {Combine like terms}

     4x + 4 = 180 {Now, subtract 4 from both sides}

4x + 4 - 4 = 180 - 4

             4x  = 176

Now divide both sides by 4

              x = 176/4

x =44

19) In parallelogram, adjacent angles are supplementary (add up to 180)

⇒∠GAC +  ∠ACF = 180

125 + ∠ACF  = 180  

       Now, subtract 125 from both sides

∠ACF = 180 - 125

∠ACF = 55

21) In parallelogram, adjacent angles are supplementary (add up to 180)

∠CFG + ∠ACF = 180

2w +30 + w + 15 = 180

2w +w + 30+ 15 = 180

          3w + 45   = 180

                      3w  = 180 - 45

                      3w = 135

                        w = 135/3

w = 45

∠ACF = w + 15

           = 45 + 15

ACF =  60

21) In parallelogram, opposite sides are congruent.

GF = AC

4x - 14 = 2x + 2

       4x = 2x + 2 + 14

       4x = 2x +  16

4x - 2x  = 16

    2x    = 16

          x = 16/2

         x = 8

22) In parallelogram, the diagonals bisect each other.

XC = GX

3y - 3  =2y + 2

       3y = 2y + 2 + 3

       3y = 2y + 5

  3y - 2y= 5

         y = 5

23) The length of the  middle segment of trapezium is half the sum of the two parallel sides.

[tex]\dfrac{b_{1}+b_{2}}{2}=110\\\\\\b_{1}+b_{2}=110*2\\[/tex]