What is the factorization of 216x12 – 64? (6x3 – 4)(36x6 24x3 16) (6x3 – 4)(36x9 24x3 16) (6x4 – 4)(36x8 24x4 16) (6x4 – 4)(36x12 24x4 16)

Respuesta :

The solution to the given expression is (6x^4-40)(36x^8+48x^4+16)

What will be the equation?

We have the following expression

[tex]=216x^{12}-64[/tex]

we can also write it as

[tex]=(6x^4)^3-(4)^3[/tex]

Now from the formula

[tex]a^3-b^3=(a-b)(a^2+b^2+2ab)[/tex]

[tex](6x^3)-(4)^3=(6x^4-4)((6x^4)^2+(4)^2+(2\times 6x^4\times 4)[/tex]

[tex](6x^3)-(4)^3=(6x^4-4)((6x^8+16+(48x^4))[/tex]

[tex](6x^3)-(4)^3=(6x^4-4)(6x^8+48x^4+16)[/tex]

Thus the solution to the given expression will be

[tex](6x^4-40)(36x^8+48x^4+16)[/tex]

To know more about algebraic identity follow

https://brainly.com/question/662239