Respuesta :

[tex]z^5 = -32 \\ \\ r^5 (cos \theta +i sin \theta)^5 = -32 \\ \\ r^5 (cos (5 \theta) +i sin(5\theta)) = -32 \\ \\ 2^5 (cos (\pi+n2\pi) +i sin (\pi+n2\pi) ) =-32, n = 0,1,2,3,4 \\ \\ \theta = \frac{\pi}{5}+n \frac{2\pi}{5} \\ \\ \theta_1 - \theta_0 = \frac{3\pi}{5} - \frac{\pi}{5} = \frac{2\pi}{5} [/tex]

The angle between the consecutive roots will be "72°".

Given:

  • [tex]x^5+32 = 0[/tex]

then,

  • [tex]z^5 =-32[/tex]

Let,

→ [tex]z = r(Cos \Theta+ iSin \Theta)[/tex]

Now,

→ [tex]r^5(Cos \Theta + iSin \Theta)^5 = -32[/tex]

  [tex]r^5 (Cos (50)+i Sin (50)) = -32[/tex]

  [tex]2^5(Cos(\pi +n 2 \pi))+ i Sin \Theta(\pi+ n2\pi) = -32[/tex]

Where, n = 0, 1, 2, 3, 4

→ [tex]\Theta = \frac{\pi}{5}+ n \frac{2 \pi}{5}[/tex]

  • [tex]\Theta_0 = \frac{\pi}{5}[/tex]
  • [tex]\Theta_1 = \frac{\pi}{5} + \frac{2 \pi}{5}[/tex]

The consecutive difference will be:

= [tex]\Theta_1 - \Theta_0[/tex]

= [tex]\frac{2 \pi}{5} +\frac{\pi}{5} -\frac{\pi}{5}[/tex]

= [tex]\frac{2 \pi}{5}[/tex]

= [tex]\frac{2}{5}\times 180^{\circ}[/tex]

= [tex]72^{\circ}[/tex]

Thus the above approach is correct.

Learn more:

https://brainly.com/question/24785460