What is the simplified form of the quantity 4 z squared minus 16z plus 15 over the quantity 2 z squared minus 11 z plus 15?

Respuesta :

bcalle
Factor the numerator and denominator to get
(2z-3)(2z-5) / (z-3)(2z-5)
Since there is a common factor of (2z -5) on the numerator and denominator this factor will cancel leaving (2z-3)/(z-3)

Answer:

[tex]\frac{(2z-3)}{(z-3)}[/tex]

Step-by-step explanation:

[tex]\frac{4z^2-16z+15}{2z^2-11z+15}[/tex]

To simplify this we factor the numerator and denominator separately

factor 4z^2 - 16z+15

We apply 'ac' method, 4* 15 = 60

-10 * -6 = 60

-10 - 6 = -16

Now we split -16z using factors -10z -6z

[tex]4z^2 - 10z-6z+15[/tex]

Take out GCf from first two terms and last two terms

[tex]2z(2z-5)-3(2z+5)[/tex]

(2z-3)(2z-5)

factor 2z^2 - 11z+15

We apply 'ac' method, 2* 15 = 30

-5 * -6 = 30

-5 - 6 = -11

Now we split -11z using factors -5z -6z

[tex]2z^2 - 5z-6z+15[/tex]

Take out GCf from first two terms and last two terms

[tex]z(2z-5)-3(2z-5)[/tex]

(z-3)(2z-5)

Now we replace the factors

[tex]\frac{(2z-3)(2z-5)}{(z-3)(2z-5)}[/tex]

Cancel out 2z-5 at the top and bottom

[tex]\frac{(2z-3)}{(z-3)}[/tex]