Respuesta :
Answer:
[tex]\dfrac{30\sqrt{3}+5\pi }{12}\text{ square unit}[/tex]
Step-by-step explanation:
Given: Two curve
[tex]y=5\cos(4x)[/tex]
[tex]y=5-5cos(4x)[/tex]
We are given two curve and find area under both curve between [tex]0\leq x\leq \dfrac{\pi}{4}[/tex]
First we draw the graph of both curve on same coordinate plane. Please see the attachment for graph.
Area under the curve [tex]=\int_a^b(y_{\text{Upper}}-y_{\text{Lower}})dx[/tex]
For region 1:
[tex]A_1=\int_0^{\frac{\pi}{12}}(y_1-y_2)dx[/tex]
[tex]A_1=\int_0^{\frac{\pi}{12}}(5\cos(4x)-5+5\cos(4x))dx[/tex]
[tex]A_1=\int_0^{\frac{\pi}{12}}(10\cos(4x)-5)dx[/tex]
[tex]A_1=\dfrac{10}{4}\sin(4x)|_0^{\frac{\pi}{12}}-5x|_0^{\frac{\pi}{12}}[/tex]
[tex]A_1=\dfrac{5\sqrt{3}}{4}-\dfrac{5\pi }{12}\approx 0.8561[/tex]
For region 2:
[tex]A_2=\int_{\frac{\pi}{12}}^{\frac{\pi}{4}}(y_2-y_1)dx[/tex]
[tex]A_2=\int_{\frac{\pi}{12}}^{\frac{\pi}{4}}(5\cos(4x)-5+5\cos(4x))dx[/tex]
[tex]A_2=\int_{\frac{\pi}{12}}^{\frac{\pi}{4}}(5-10\cos(4x))dx[/tex]
[tex]A_2=5x|_{\frac{\pi}{12}}^{\frac{\pi}{4}}-\dfrac{10}{4}\sin(4x)|_{\frac{\pi}{12}}^{\frac{\pi}{4}}[/tex]
[tex]A_2=\dfrac{5\pi }{6}+\dfrac{5\sqrt{3}}{4}\approx 4.7831[/tex]
Total area under the curve, A
[tex]A=A_1+A_2[/tex]
[tex]A=\dfrac{5\sqrt{3}}{4}-\dfrac{5\pi }{12}+\dfrac{5\pi }{6}+\dfrac{5\sqrt{3}}{4}[/tex]
[tex]A=\dfrac{30\sqrt{3}+5\pi }{12}\approx 4.7831[/tex]
Hence, The area of region enclosed by the two curve is [tex]\dfrac{30\sqrt{3}+5\pi }{12}\text{ square unit}[/tex]

The correct statement is that the total area under the curve is 5.6392.
What is integration?
It is the reverse of differentiation. Sinusoidal FunctionIt is a function that repeats itself in a particular time interval.
Given
y = 5 cos 4x, y = 5 − 5 cos 4x,
The area under the curve = [tex]\rm \int_a^b (y_ {max} - y_{min}) dx[/tex]
How to find the enclosed area by function?
For region 1
[tex]\rm A_1 = \int_0^{\frac{\pi}{12}} (y_1 - y_2) dx\\\\A_1 = \int_0^{\frac{\pi}{12}} (5 cos 4x - 5 + 5cos 4x)dx\\\\A_1 = \int_0^{\frac{\pi}{12}} (10cos4x - 5)dx\\\\A_1 = \dfrac{10}{4} [sin 4x]_0^{\frac{\pi}{12}} - 5[x]_0^{\frac{\pi}{12}}\\\\A_1 = \dfrac{5\sqrt{3}} {4} - \dfrac{5\pi }{12}\\\\A_1 = 0.8561[/tex]
For region 2
[tex]\rm A_2 = \int_{\frac{\pi}{12}}^{\frac{\pi}{4} } (y_2 - y_1) dx\\\\A_2 = \int_{\frac{\pi}{12}}^{\frac{\pi}{4} } (5-5 cos 4x - 5cos 4x)dx\\\\A_2 = \int_{\frac{\pi}{12}}^{\frac{\pi}{4} } (5-10cos4x )dx\\\\A_2 = 5[x]_{\frac{\pi}{12}}^{\frac{\pi}{4} } - \dfrac{10}{4} [sin 4x]_{\frac{\pi}{12}}^{\frac{\pi}{4} } \\\\A_2 = 5[\dfrac{\pi}{4} - \dfrac{\pi}{12}] - \dfrac{10}{4} [ 0 - \dfrac{5\sqrt{3} }{4}]\\\\A_2 = 4.7831[/tex]
The total area A under curve A will be
A = [tex]\rm A_1 +A_2[/tex]
A = 0.8561 + 4.7831A = 5.6392
Thus, the total area under the curve is 5.6392.
More about the integration link is given below.
https://brainly.com/question/18651211