Respuesta :
If this is a combination problem, 325 choose 1, anytime you have a choose 1, the answer it the n, so 325 is the answer.
Answer:
[tex]{325 \choose 1}=325[/tex]
Step-by-step explanation:
Given : [tex]{325 \choose 1}[/tex]
We have to find the value of given combination.
Consider the given expression [tex]{325 \choose 1}[/tex]
We know
Given a number of subset of r elements out of n elements is given by,
[tex]{n \choose r}=\frac{n!}{r!\left(n-r\right)!}[/tex]
Comparing , we have n = 325 and r = 1
Substitute, we get,
[tex]{325 \choose 1}=\frac{325!}{1!\left(325-1\right)!}[/tex]
On simplifying, we get,
[tex]{325 \choose 1}=\frac{325!}{1!\left(324\right)!}[/tex]
[tex]325!=325 \times 324![/tex] substitute, we get,
[tex]{325 \choose 1}=\frac{325 \times 324!}{1!\left(324\right)!}[/tex]
On simplifying, we get,
[tex]{325 \choose 1}=\frac{325}{1!}[/tex]
Thus, [tex]{325 \choose 1}=325[/tex]