Respuesta :

bcalle
If this is a combination problem, 325 choose 1, anytime you have a choose 1, the answer it the n, so 325 is the answer.

Answer:

[tex]{325 \choose 1}=325[/tex]

Step-by-step explanation:

  Given :   [tex]{325 \choose 1}[/tex]

We have to find the value of given combination.

Consider the given expression  [tex]{325 \choose 1}[/tex]

We know

Given a number of subset of r elements out of  n elements is given by,

[tex]{n \choose r}=\frac{n!}{r!\left(n-r\right)!}[/tex]

Comparing , we have n = 325 and r = 1

Substitute, we get,

[tex]{325 \choose 1}=\frac{325!}{1!\left(325-1\right)!}[/tex]

On simplifying, we get,

[tex]{325 \choose 1}=\frac{325!}{1!\left(324\right)!}[/tex]

[tex]325!=325 \times 324![/tex] substitute, we get,

[tex]{325 \choose 1}=\frac{325 \times 324!}{1!\left(324\right)!}[/tex]

On simplifying, we get,

[tex]{325 \choose 1}=\frac{325}{1!}[/tex]

Thus, [tex]{325 \choose 1}=325[/tex]