Respuesta :

Answer:

779

Step-by-step explanation:

Given Arithmetic series is: 150+143+136+…+(-102)+(-109)

Here,

First term (a) = 150

Common difference (d) = 143 - 150 = - 7

[tex]n^{th}\: term:\:a_n = -109[/tex]

The formula for [tex]n^{th}\: term[/tex] of an arithmetic series is given as:

[tex]a_n = a +(n-1)d[/tex]

Plugging the values of a, d and [tex]a_n[/tex] in the above formula, we will find the number of terms that exist from 150 to (-109)

[tex]-109 = 150+(n-1)(-7)[/tex]

[tex]\implies\: -109 -150=(n-1)(-7)[/tex]

[tex]\implies\: -259=(n-1)(-7)[/tex]

[tex]\implies\: \frac{-259}{-7}=(n-1)[/tex]

[tex]\implies\: 37=n-1[/tex]

[tex]\implies\: 37+1=n[/tex]

[tex]\implies\: n=38[/tex]

Thus, there are total 38 terms in the given Arithmetic series.

Now,

Sum of n terms of an arithmetic series is given by the formula: [tex]S_n=\frac{n}{2}(a +a_n)[/tex],

Plugging in the values, we find:

[tex]S_{38}=\frac{38}{2}[150 +(-109)][/tex]

[tex]\implies S_{38}=\frac{38}{2}[150 +(-109)][/tex]

[tex]\implies S_{38}=19[150 -109][/tex]

[tex]\implies S_{38}=19[41][/tex]

[tex]\implies S_{38}=779[/tex]