Respuesta :

Answer:

y = 0.6x + 3

How to determine the equation of the line?

To determine the equation of the line, we need to determine the slope and the y-intercept. Then, we will substitute the slope and the y-intercept in the slope intercept form equation to obtain the equation in slope intercept form.

Slope of line:                                                                                    

Two points that lie on line: (0, 3) and (-5, 0)

[tex]\implies \text{Slope} = \dfrac{\text{Rise}}{\text{Run}} = \dfrac{y_{2} - y_{1}}{x_{2} - x_{1}}[/tex]

[tex]\implies \text{Slope} = \dfrac{3 - 0 }{0- (-5)}\\[/tex]

[tex]\implies \text{Slope} = \dfrac{3 }{0+5}\\[/tex]

[tex]\implies \text{Slope} = \dfrac{3 }{5} = 0.6[/tex]

Y-intercept of line:                                                                          

[tex]\implies \text{Intersection of line on y-axis: 3}[/tex]

[tex]\implies \text{y-intercept: 3}[/tex]

Equation of line:                                                                              

Slope intercept form:

  • y = mx + b

[Where "m" is the slope and "b" is the y-intercept]

Substitute the slope (m) and the y-intercept (b) in the formula;

[tex]\implies \text{Slope intercept form: y = (m)x + (b)}[/tex]

[tex]\implies \text{Equation of line in slope intercept form: y = (0.6)x + (3)}[/tex]

Open the parenthesis in the equation;

[tex]\implies\text{Equation of line in slope intercept form: \boxed{\text{y = 0.6x + 3}}}[/tex]

Learn more about slope intercept form: https://brainly.com/question/9682526