Select the correct answer.
What is the solution to this system of equations?
x-2y = 15
2x+4y=-18
OA. x = 1, y=-6
OB. X= 1, y=-7
ОС. Х 3, y= -6
OD. x= 3, y=-7
Reset
Next

Select the correct answer What is the solution to this system of equations x2y 15 2x4y18 OA x 1 y6 OB X 1 y7 ОС Х 3 y 6 OD x 3 y7 Reset Next class=

Respuesta :

Answer:

O C. x = 3, y = -6

Step-by-step explanation:

  • x - 2y = 15
  • 2x + 4y = -18

Take Equation 1 and equate to x.

  • x - 2y = 15
  • x = 2y + 15

Now, substitute in Equation 2.

  • 2x + 4y = -18
  • 2(2y + 15) + 4y = -18
  • 4y + 30 + 4y = -18
  • 8y = -48
  • y = -6
  • x = 15 + 2(-6)
  • x = 3
  • Option C

Answer:

C)  x = 3, y = -6

Step-by-step explanation:

[tex]\textsf{Equation 1}:x-2y=15[/tex]

[tex]\textsf{Equation 2}:2x+4y=-18[/tex]

Rewrite Equation 1 to make x the subject:

[tex]\implies x=15+2y[/tex]

Substitute into Equation 2 and solve for y:

[tex]\implies 2(15+2y)+4y=-18[/tex]

[tex]\implies 30+4y+4y=-18[/tex]

[tex]\implies 8y=-48[/tex]

[tex]\implies y=-6[/tex]

Substitute found value of y into Equation 1 and solve for x:

[tex]\implies x-2(-6)=15[/tex]

[tex]\implies x+12=15[/tex]

[tex]\implies x=3[/tex]

Therefore, the solution to the system of equations is:

x = 3, y = -6