Respuesta :

The center of the circle is (7,8) and the equation of the given circle is (x- 7)^2 + (y - 8)^2 = 16

How to determine the equation of the circle?

The given parameters are:

Center (a,b) = (7,8)

Point (x,y) = (11,8)

Calculate the radius (r) using:

[tex]r = \sqrt{(x- a)^2 + (y - b)^2}[/tex]

So, we have:

[tex]r= \sqrt{(11- 7)^2 + (8 - 8)^2}[/tex]

Evaluate the expression

[tex]r = 4[/tex]

The circle equation is then calculated using:

[tex](x- a)^2 + (y - b)^2 =r^2[/tex]

So, we have:

[tex](x- 7)^2 + (y - 8)^2 = 4^2[/tex]

Evaluate the exponent

[tex](x- 7)^2 + (y - 8)^2 = 16[/tex]

Hence, the equation of the given circle is (x- 7)^2 + (y - 8)^2 = 16

Read more about circle equations at:

https://brainly.com/question/1559324