Respuesta :
Answer:
see explanation
Step-by-step explanation:
(a)
the centre of the circle is at the midpoint of the endpoints.
using the midpoint formula
centre = ( [tex]\frac{-10+4}{2}[/tex] , [tex]\frac{-2+6}{2}[/tex] ) = ([tex]\frac{-6}{2}[/tex] , [tex]\frac{4}{2}[/tex] ) = (- 3, 2 )
(b)
the radius r is the distance from the centre to either of the endpoints
using the distance formula to find r
r = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]
with (x₁, y₁ ) = (- 3, 2 ) and (x₂, y₂ ) = Q (4, 6 )
r = [tex]\sqrt{(4-(-3))^2+(6-2)^2}[/tex]
= [tex]\sqrt{(4+3)^2+4^2}[/tex]
= [tex]\sqrt{7^2+16}[/tex]
= [tex]\sqrt{49+16}[/tex]
= [tex]\sqrt{65}[/tex]
(c)
the equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k ) are the coordinates of the centre and r the radius , then
(x - (- 3) )² + (y - 2)² = ([tex]\sqrt{65}[/tex] )² , that is
(x + 3)² + (y - 2)² = 65
Answer:
Step-by-step explanation:
a) Use midpoint formula to find the center.
[tex]\sf \boxed{Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)}[/tex]
P(-10 ,-2) ⇒x₁ = -10 & y₁ = -2
Q(4,6) ⇒ x₂=4 & y₂ = 6
[tex]\sf midpoint = \left(\dfrac{-10+4}{2},\dfrac{-2+6}{2}\right)[/tex]
[tex]=\left(\dfrac{-6}{2},\dfrac{4}{2}\right)\\\\=\left(-3,2\right)[/tex]
b) To find the radius, use the distance formula
[tex]\boxed{distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}[/tex]
Q(4,6) & O(-3,2)
[tex]r=\sqrt{(-3-4)^2+(2-6)^{2}}\\\\=\sqrt{(-7)^{2}+(-4)^2}\\\\=\sqrt{49+16}\\\\= \sqrt{65}[/tex]
radius = √65
c) Equation of circle : (x - h)² +(y -k)² = r²
Where (h,k) is the coordinates of the center and r is the radius
(x -[-3])² + (y - 2)²= (√65)²
(x + 3)² + (y -2)² = 65