Answer:
Yes, they intersect at the coordinates (0, 7) and (6, 19)
Step-by-step explanation:
[tex]y = -x^2 + 8x + 7\\y = 2x + 7\\y = y\\-x^2 + 8x + 7 = 2x + 7\\-x^2+ 6x = 0\\x^2 - 6x = 0\\x(x - 6) = 0\\x = 0\ \ \text{or}\ \ x = 6\\[/tex]
[tex]\text{if}\ x = 0\\y = 2x + 7\\y = 2(0) + 7 = 7\\\text{coordinate is:}\ (0, 7)[/tex]
[tex]\text{if}\ x = 6\\y = 2x + 7\\y = 2(6) + 7 = 12 + 7 = 19\\\text{coordinate is:}\ (6, 19)[/tex]